Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stream metabolism, encompassing gross primary production and ecosystem respiration, reflects the fundamental energetic dynamics of freshwater ecosystems. These processes regulate the concentrations of dissolved gases like oxygen and carbon dioxide, which in turn shape aquatic food webs and ecosystem responses to stressors such as floods, drought, and nutrient loading. Historically difficult to quantify, stream metabolism is now measurable at high temporal resolution thanks to advances in sensor technology and modeling. The StreamPULSE dataset includes high-frequency sensor data, metadata, and modeled estimates of ecosystem metabolism. This living dataset contributes to a growing body of open-access data characterizing the metabolic pulse of stream ecosystems worldwide. To contribute to StreamPULSE, visit data.streampulse.org. All data contributed to StreamPULSE become public after an optional embargo period. Use this publication to access annual data releases, or use data.streampulse.org to download new data as they become available.more » « less
-
The primary objective of this project is to understand how long-term climate variability and change influence the structure and function of desert streams via effects on hydrologic disturbance regimes. Climate and hydrology are intimately linked in arid landscapes; for this reason, desert streams are particularly well suited for both observing and understanding the consequences of climate variability and directional change. Researchers try to (1) determine how climate variability and change over multiple years influence stream biogeomorphic structure (i.e., prevalence and persistence of wetland and gravel-bed ecosystem states) via their influence on factors that control vegetation biomass, and (2) compare interannual variability in within-year successional patterns in ecosystem processes and community structure of primary producers and consumers of two contrasting reach types (wetland and gravel-bed stream reaches). This specific dataset was collected to monitor long-term changes in dissolved nutrient concentrations (N, P, C) by sampling surface water within gravel and wetland dominated reaches during baseflow.more » « less
-
Abstract The “dimensional stability” approach measures different components of ecological stability to investigate how they are related. Yet, most empirical work has used small‐scale and short‐term experimental manipulations. Here, we apply this framework to a long‐term observational dataset of stream macroinvertebrates sampled between the winter flooding and summer monsoon seasons. We test hypotheses that relate variation among stability metrics across different taxa, the magnitude of antecedent (monsoon) and immediate (winter) floods to stability metrics, and the relative importance of disturbance magnitude and taxonomic richness on community dimensional stability. Cluster analysis revealed four distinct stability types, and we found that the magnitude of floods during the prior monsoon was more important in influencing stability than the winter flood itself. For dimensional stability at the community level, taxonomic richness was more important than disturbance magnitude. This work demonstrates that abiotic and biotic factors determine dimensional stability in a natural ecosystem.more » « less
-
Abstract The increasing availability of high‐frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs.more » « less
An official website of the United States government
